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ABSTRACT
Processing speed is a crucial ability that changes over the course of the lifespan. 
Training interventions on processing speed have shown promising effects and have 
been associated with improved cognitive functioning. While training-related changes 
in processing speed are often studied using reaction times (RTs) and error rates, these 
measures provide limited insight into the mechanisms underlying changes during 
training. The drift-diffusion model provides estimates of the cognitive processes 
underlying speeded decision tasks, such as the rate of evidence accumulation (drift 
rate), response strategies (boundary separation), as well as time for other processes 
such as stimulus encoding and motor response (non-decision time). In the current 
study, we analyzed existing data of an extensive multi-session training intervention 
(von Bastian & Oberauer, 2013) to disentangle changes in drift rate, boundary 
separation, and non-decision time during training of different speeded choice-RT 
tasks. During this training intervention, 30 participants performed 20 training sessions 
over the course of four weeks, completing three tasks each session: a face-matching, 
a pattern-matching, and a digit-matching task. Our results show that processing 
speed training increased drift rates throughout training. Boundary separation and 
non-decision time decreased mostly during the initial parts of training. This pattern 
of prolonged training-related changes in rate of evidence accumulation as well as 
early changes in response strategy and non-decision processes was observed across 
all three tasks. Future research should investigate how these training-related changes 
relate to improvements in cognitive functioning more broadly.
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INTRODUCTION
People constantly make decisions based on the perceptual information around them. These 
decisions can occur naturally and rapidly, such as recognizing a friend on the street and 
greeting them before they have passed by. Before the decision is made to utter the friend’s 
name, perceptual information of this friend’s face and appearance is processed quickly enough 
to retrieve and then call out their name on time. The speed of processing perceptually available 
information, such as a familiar face or other information from our environment, differs 
between individuals and these differences are related to a range of individual differences in 
other cognitive abilities (e.g., Kail & Salthouse, 1994), including fluid intelligence (Sheppard & 
Vernon, 2008) and working memory (Schmiedek et al., 2007). Like other fluid cognitive abilities 
(Bialystok et al., 2012), processing speed changes over the course of the lifespan: it increases 
from childhood to adulthood and then decreases again from young to old adulthood (e.g., 
Salthouse & Kail, 1983).

In recent years, cognitive training interventions have been studied as a way of enhancing 
cognitive abilities, such as processing speed, and counteracting their age-related decline 
(Edwards et al., 2017, 2018; Simons et al., 2016; von Bastian et al., Belleville, et al., 2022). 
Whereas training interventions have targeted different cognitive domains with overall mixed 
results, training processing speed has shown promising effects and has been associated with 
improved cognitive functioning, improved everyday life functioning and even delayed onset of 
dementia (Edwards et al., 2017, 2018). To design training interventions that consistently show 
such far-reaching effects, it is important to understand which mechanisms facilitate these 
effects and induce changes already during training (von Bastian, Belleville, et al., 2022). The 
current study investigated the mechanisms underlying training-related changes in processing 
speed by examining the changes in the components of reaction time (RT) distributions estimated 
with the drift-diffusion model, using existing data of a multi-session training intervention (von 
Bastian & Oberauer, 2013). 

MEASURING PERFORMANCE IN SPEEDED DECISION TASKS

A common finding during cognitive training is that people improve in the trained tasks (e.g., 
von Bastian, Belleville, et al., 2022; Simons et al., 2016). These improvements are referred to as 
training effects, while improvements in tasks different from the trained tasks are called transfer 
effects. Processing speed can be assessed with simple tasks that require people to perceptually 
locate, classify, compare or merely detect stimuli presented to them. In a two-choice RT task, 
for example, participants are presented with one or more stimuli and two response options 
to choose from, such as viewing a face and categorizing it as familiar or not. Often, the 
presentation time of the stimuli is limited and participants are asked to respond both quickly 
and accurately. Performance on these speeded tasks is then measured by RTs and error rates 
with decreases in mean RT and error rate used as indicators for training effects. 

However, the use of RTs and error rates as performance measures for training-related 
improvements in processing speed tasks has several limitations. First, RT distributions are often 
skewed (e.g., Micceri, 1989). Therefore, commonly used metrics such as the mean do not 
capture the RT distribution well. Second, processing speed tasks are designed so that the task 
itself is easy and can be performed well by most people. Therefore, error rates typically show 
ceiling effects, resulting in limited variance and, thus, interpretability. Third, the theoretical 
interpretation of improvements in RTs and error rates is not informative with regards to the 
specific cognitive mechanisms affected by training. For example, RTs can be reduced not only 
by improving the efficiency in stimulus information processing, but also by enhancing the 
speed of motor responses and perceptual encoding (Pashler & Baylis, 1991; Strobach et al., 
2013). Finally, changes in RT can indicate improved task performance but also reflect strategic 
changes in speed-accuracy trade-offs. Whereas slow RTs can be the result of a more cautious 
response strategy favoring accuracy over speed, fast RTs can reflect favoring speed over 
accuracy (e.g., Schouten & Bekker, 1967; Wood & Jennings, 1976). Overall, while improved RTs 
and error rates are often used to measure training effects, these measures provide only limited 
information about the mechanisms underlying training-related change (see also von Bastian, 
Reinhartz, et al., 2022).
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ESTIMATING DECISION COMPONENTS WITH THE DRIFT-DIFFUSION MODEL

Cognitive models can provide more insight into response strategies and training-related 
mechanisms underlying changes in behavioral performance. A widely used cognitive 
computational model applicable to speeded decision tasks is the drift-diffusion model. The 
model is fit to the RT distribution and error rates simultaneously, thereby accounting for the 
speed-accuracy trade-off (Stafford et al., 2020), to estimate interpretable decision parameters 
(Ratcliff, 1978; Ratcliff & McKoon, 2008). Figure 1 illustrates the components of the decision-
making process in Ratcliff’s (1978) diffusion model. The model distinguishes the rate of a 
noisy evidence accumulation process from response strategies and processes unrelated to 
the decision itself, such as stimulus encoding and motor response (Ratcliff, 1978; Ratcliff & 
McKoon, 2008). 

In Ratcliff’s (1978) diffusion model, the evidence accumulation begins after the encoding 
of a presented stimulus, for example, a familiar or an unfamiliar face. The starting point of 
the evidence accumulation process reflects possible a priori biases towards either response 
option. In Figure 1, the starting point is located in the middle between the two response options 
reflecting no bias, while a bias would be indicated by a starting point shifted to one of the 
response options. The slope of the evidence accumulation process indicates how efficiently 
stimulus information is processed and is quantified as the drift rate (v). Reaching the threshold 
for either response option (e.g., that the presented face is familiar or unfamiliar) indicates that 
sufficient evidence has been accumulated to execute the decision. The distance between the two 
response thresholds is the boundary separation (a). The boundary separation reflects response 
caution and, thus, is an indicator for the speed-accuracy trade-off. The boundary separation 
can be wide, indicating high response caution, thus favoring accuracy and accumulating more 
evidence prior to a decision, or narrow, indicating low response caution, favoring speed and 
accumulating less evidence prior to a decision. Ultimately, when a decision has been made, a 
corresponding response has to be executed by, for example, pressing a response key. The non-
decision time (t0) captures the time for any other processes not directly related to the decision 
itself, for example, encoding the stimulus and executing the motor response.

TRAINING-RELATED CHANGES IN DECISION PARAMETERS

Previous studies have shown that repeatedly performing a task can affect evidence 
accumulation, response caution and, occasionally, non-decision processes. Several studies 
found that, when repeatedly performing the same speeded task for up to six sessions, the speed 

Figure 1 Illustration 
of the Drift-Diffusion 
Model. See main text for 
further information. From 
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of evidence accumulation increases (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 
2012; Petrov et al., 2011; Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 
2014). This indicates that training may improve the efficiency of information processing and 
suggests that increased drift rates are one factor underlying the decrease in response times 
that is consistently observed when repeatedly performing a task (Heathcote et al., 2000; Logan, 
1992; Newell & Rosenbloom, 1981). Another factor that contributes to the decrease in response 
times is a shift in response strategy after repeated task practice. While drift rates increase 
during brief periods of training, the boundary separation indeed often decreases (Dutilh et al., 
2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 2006; Zhang 
& Rowe, 2014). Therefore, training can elicit a shift in response caution leading people to focus 
more on speed rather than accuracy. Training-related changes elicited in non-decision time 
are less consistent. Some studies have shown a decrease in this decision parameter (Dutilh et 
al., 2011; Dutilh et al., 2009; Petrov et al., 2011), while other studies suggest that repeatedly 
performing a task does not substantially affect perceptual and motor processing (Pashler & 
Baylis, 1991; Strobach et al., 2013). 

Training-related improvements in evidence accumulation combined with an increased focus 
on speed, as opposed to accuracy, can explain why decreased RTs after training are still often 
accompanied by increased accuracy (Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 
2006; Zhang & Rowe, 2014). More efficient information processing has been argued to counteract 
the decrease in response caution, thus, allowing for error rates to remain low. However, whether 
error rates decrease also depends on the type of feedback provided during task performance. 
For example, Dutilh and colleagues (2009) provided accuracy-related feedback to one half of 
their participants and speed-related feedback to the other half. The group focusing on accuracy 
made less errors already at the start of training and mainly improved in their RTs. The group 
focusing on speed showed the opposite pattern, with faster responses already at the start 
of training and mainly improving in accuracy. This demonstrates that the type of feedback 
provided when repeatedly performing a task influences not only the initial task performance 
but also the pattern of change during training. However, the type of feedback provided during 
training of speeded decision tasks has varied greatly in previous studies. While some studies 
have experimentally varied accuracy versus speed-related feedback (Dutilh et al., 2009; Zhang 
& Rowe, 2014), others have provided feedback either only for slow responses (Liu & Watanabe, 
2012, van Ravenzwaaij et al., 2014), for slow, fast, and incorrect responses (Dutilh et al., 2011; 
Ratcliff et al., 2006) or instead given bonus points for correct responses (Petrov et al., 2011). 
Therefore, it remains unclear how training affects drift-diffusion parameters when consistent 
feedback is given on all responses throughout training.

Moreover, previous studies investigating changes during training used only a single training task 
during their training. This might be problematic, because it remains unclear whether changes 
observed are task-specific or task-general (Shipstead et al., 2012; von Bastian et al., 2019). 
In addition, these studies mainly used only one of two types of perceptual discrimination 
tasks, that is, either dot-motion detection tasks (Liu & Watanabe, 2012; Petrov et al., 2011; 
van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014) or verbal discrimination tasks (Dutilh et 
al., 2011; Dutilh et al., 2009; Ratcliff et al., 2006). The limited variability in speeded decision 
tasks limits the generalizability of previously reported training-related changes in decision 
parameters and raises the question whether the same effects emerge in a wider variety of 
decision tasks. A recent paper by Schmiedek and colleagues (2022) addressed this concern 
by analyzing the difference in performance on three different choice-RT tasks before and 
after an extensive 100-session training intervention. The results showed pre- to post-training 
increases in drift rate and decreases in boundary separation and non-decision time across 
these different tasks. However, Schmiedek et al. (2022) did not report on changes occurring 
during training. 

Further limitations of the previous studies investigating changes during training concern the 
duration of training and the number of participants included in the studies. While cognitive 
training interventions typically consist of 10 to 20 sessions performed over several weeks 
(von Bastian, Belleville, et al., 2022) and even up to 100 sessions (e.g., Schmiedek et al., 2010, 
2022), the training-related changes in decision parameters have only been investigated for six 
training sessions or less (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov 
et al., 2011; Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014). Also, in 
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most previous studies, sample sizes were small, ranging from 4 to 14 participants (Dutilh et al., 
2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Zhang & Rowe, 2014), increasing the risk of 
false-positive findings (Button et al., 2013). Changes in the drift-diffusion model parameters 
studied with accuracy-versus-speed group manipulations need to be interpreted with caution 
when, for example, groups consisted of only two participants each (Dutilh et al., 2009). Taken 
together, although the previous studies provide tentative evidence supporting changes in drift-
diffusion parameters when repeatedly performing a single task, it remains unclear how these 
decision-making components change during an extensive, prolonged training regime with 
varied decision tasks and performance-based, trial-by-trial feedback.

PRESENT STUDY

In the present study, we fit the drift-diffusion model to existing data of a previously published, 
multi-session processing speed training intervention (von Bastian & Oberauer, 2013). During 
this training intervention, 30 participants performed 20 training sessions over the course 
of four weeks, completing three different choice-RT tasks each session: a face-matching, a 
pattern-matching, and a digit-matching task. These tasks require evidence accumulation 
regarding whether two stimuli that are presented simultaneously are the same. Therefore, in 
our application, the diffusion model does not describe the processing of a single stimulus as 
in the original model by Ratcliff (1978). However, this model instead describes the decision-
making process on a more general level, which is similar to previous studies that used tasks 
with similar (e.g., dot-motion detection tasks; Liu & Watanabe, 2012; Petrov et al., 2011; van 
Ravenzwaaij et al., 2014; Zhang & Rowe, 2014; verbal discrimination tasks; Dutilh et al., 2011; 
Dutilh et al., 2009; Ratcliff et al., 2006; and other choice-RT tasks; Schmiedek et al., 2022) or 
even higher complexity, such as judging the correctness of mathematical equations (Lerche 
et al., 2020).

The use of three different tasks enables the comparison of training-related changes in different 
perceptual contexts and task difficulties. Each task consisted of 500 trials per session, thereby 
providing 30,000 trials per participant over the course of training and, thus, a considerably 
higher trial count compared to previous studies. Unlike previous studies, no specific speed- or 
accuracy-related manipulations were applied in the present study; participants were instructed 
to perform both accurately and quickly during all trials when deciding whether the two 
presented stimuli portrayed the same face, same pattern, or same series of digits. After each 
trial, feedback on the correctness of the participant’s response was provided. The presentation 
time of the stimuli was adjusted adaptively based on the participant’s performance. Therefore, 
by providing variability in tasks, consistent feedback, and adaptive training, this study’s training 
regime made use of components that are crucial to successful training (Schmidt & Bjork, 1992) 
and offers an ideal dataset to investigate the changes in training-related mechanisms during 
an extensive processing speed training. 

With this study, we examined whether decision parameters estimated by the drift-diffusion 
model show similar patterns during extensive training as previously found during brief training 
periods. Therefore, throughout the course of the 20 training sessions, we expected participants 
to increase in their efficiency of evidence accumulation, that is, their drift rate (Hypothesis 1). 
Furthermore, we expected a decrease in boundary separation over time, thereby indicating 
that participants decrease their response caution and increasingly emphasize speed over 
accuracy as their training progresses (Hypothesis 2). We did not expect to see such training-
related changes in non-decision time and assumed perceptual and motor processing to remain 
unaffected by extensive training (Hypothesis 3). Additionally, we aimed to understand whether 
training-related changes differed for the different choice-RT tasks included (speeded face-, 
digit-, and pattern-matching tasks). Therefore, we tested our hypotheses using the type of task 
as a predictive factor in our analyses.

METHODS
The present methods section provides information relevant to the processing speed training 
group of a previously published training study. For a full overview of the study design and 
results beyond this training group, the reader is referred to von Bastian and Oberauer (2013). 
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PARTICIPANTS

Participants of von Bastian and Oberauer (2013) were recruited for a “cognitive training study” 
at the University of Zurich via the university’s subject pool and using flyers. They were randomly 
assigned to 1 of 4 training groups practicing either different facets of working memory or 
practicing processing speed as an active control training compared to the working memory 
training groups. In the current study, we focus only on the active control group, which included 
30 young adults (21 female, 9 male, M age = 23.77 years, SD = 4.73 years). All participants 
gave informed written consent for participation prior to testing. After completion of the study, 
participants received monetary compensation (CHF 150) or course credits.

DESIGN 

Study participation consisted of 4 weeks of training, in which participants were asked to perform 
20 training sessions. Each session took about 30–40 minutes. Participants performed their 
training on their home computer via Tatool (von Bastian, Locher, & Ruflin, 2013). Therefore, 
participants could decide themselves when they preferred to perform their training. At the end 
of each training session, training data were automatically uploaded to a web server. Whereas 
self-administering training at home increases ecological validity, it can also lead to loss of 
experimental control. Several measures were taken to assure active and conscious execution 
of the training program, such as signing a participation agreement that training completion will 
be taken seriously, monitoring training data to detect irregularities, and maintaining regular 
email contact with the participants as well as providing technical support when needed. 

MATERIALS

Each training session consisted of three tasks with 500 trials each, in the following order: face-
matching, digit-matching and pattern-matching, with breaks offered between tasks. During 
these tasks, participants were presented with a pair of stimuli for which they had to decide 
whether the pair showed the same person (face matching), the same six-digit number (digit 
matching), or the same fractal pattern (pattern matching). The face stimuli were 12 pictures 
each from 84 people (42 female, 42 male) with different facial expressions or accessories, 
taken from the AR face database (Martinez & Benavente, 1998). The digit stimuli were six-
digit numbers presented in the same font. The pattern stimuli were 305 computer-generated 
squares of fractal patterns of various bright colors and shapes (see Figure 2 for some examples). 

During all tasks, participants were asked to respond as quickly and as accurately as possible 
to the stimulus pair by pressing the “A” key for a matching stimulus pair, and the “L” key for 
a non-matching pair. After every trial, participants received feedback about the correctness 
of their response with a green check, indicating they correctly identified the stimulus pair as 
either matching or non-matching and a red cross indicating an incorrect response. The trial 
type (matching vs. non-matching), the matching stimulus pairs, and the combinations of 
non-matching pairs were selected at random. The intertrial interval was 100 ms. The stimuli 

Figure 2 Examples of Fractal 
Patterns in the Pattern-
Matching Task.
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were displayed until the participant’s response was registered or until the maximum stimulus 
presentation was exceeded. All participants started training with a maximum stimulus 
presentation duration of 5000 ms. During training, this maximum stimulus presentation was 
reduced adaptively based on the participant’s performance in the preceding 40% of trials to 
increase the difficulty of the tasks and to motivate participants to continuously focus on both 
speed and accuracy (see von Bastian & Oberauer, 2013, for more details on the adaptive level 
algorithm). The increase in difficulty was minor, however, with the maximum response time set 
to the 99th percentile of the RTs of those trials completed after the last reduction.

RESULTS
DATA PREPARATION AND PARAMETER ESTIMATION

Missing Data

Training data were partially missing for five participants. For one participant, the entire 16th 
session was not recorded. For another participant only about half of the trials of the face-
matching task were recorded during the first session, and during four other sessions their 
pattern-matching data were incomplete, which was the final task in each session. Three other 
participants also had incomplete pattern-matching data, one of them for two sessions, the 
others for one session each. As in the previously published paper, the fully missing session was 
excluded from further analyses (von Bastian & Oberauer, 2013). Training sessions with partially 
missing data were subjected to the same data treatment procedures as fully recorded training 
sessions.

Data Treatment

Before fitting the drift-diffusion model to the training data, a number of factors were considered 
first. Based on the findings from a series of simulation studies by Lerche et al. (2017), when 
using Kolmogorov-Smirnov as optimization criterion to estimate a three-parameter model a 
minimum trial number of N = 125 is recommended to obtain robust estimates with at least low 
precision (see also Voss et al., 2013). This minimum N is recommended for data without fast 
and slow RT contaminants and with a minimum of 4% of each response type that, in our case, 
are correct and incorrect responses. Slow contaminants in particular hamper the estimation, 
especially of the boundary separation which would otherwise require at least 555 trials per 
participant, task, and session (Lerche et al., 2017). 

To remove fast and slow contaminants, we excluded all trials with RTs below 250 ms and 
those with RTs that were 2.5 median absolute deviations (MAD) above the median (Leys et 
al., 2013). We also explored other frequently used cut-offs (e.g., 2 SDs) but decided to use 
the more conservative 2.5 MADs to remove a larger number of slower contaminants. RT 
trimming was performed separately per task, participant, session, and response type (correct/
incorrect). Subsequently, we excluded entire training sessions if they contained less than 
the recommended 125 trials post-RT-trimming. We then checked that each session dataset 
contained a minimum of 4% trials for each response type. For all tasks, all recorded training 
sessions contained more than 4% correct responses. However, there were a number of sessions 
with less than 4% incorrect responses which were excluded. Finally, participants with less than 
half of the training sessions remaining post-trimming (<10 training sessions) were excluded 
from all further analyses. 

Table 1 provides an overview of the included numbers of trials, sessions, and participants. The 
total number of removed trials ranged from 4.91% for face matching (remaining participants 
n = 30), 12.96% for digit matching (remaining n = 29) and up to 38.75% for pattern matching 
(remaining n = 25), reflecting variations in task difficulty. We also considered removing trials 
after errors because people adjust their response behaviors in various ways post-error (for an 
overview, see Danielmeier & Ullsperger, 2011); however, trimming of post-error trials prior to 
the listed data treatment steps would have increased the number of removed trials to 17.84% 
for face matching, 23.01% for digit matching and even 44.67% for pattern matching. Since the 
inclusion of post-error trials did not qualitatively alter the results of the analyses, we decided to 
include post-error trials to maximize the number of trials for better estimation precision.
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Model Estimation and Fit

We estimated the drift rate (v), boundary separation (a), and non-decision time (t0) separately 
per task. For each task, parameters were estimated for participants and training sessions 
(accounting for the dependency between sessions using the “depends” fast-dm function) with 
a fixed starting point of 0.5 between the upper (1, correct response) and lower (0, incorrect 
response) threshold using the open-source fast-dm-30 software applying Kolmogorov-Smirnov 
as optimization criterion (Voss & Voss, 2007, 2008; Voss et al., 2015). Subsequently, using 
the fast-dm construct-samples tool (Voss & Voss, 2007, 2008; Voss et al., 2015), data were 
simulated for each task, participant, and the corresponding sessions separately, with the same 
number of trials as in the empirical session data. As illustrated in Figure 3, while only slightly 
overestimating RTs in the first quartile, the model fits the data well. Identical patterns of model 
fit were found for all tasks irrespective of stimuli and differences in the number of available 
data points post-trimming.

ANALYSIS OF TRAINING- AND TASK-RELATED EFFECTS

Linear Mixed-Effects (LME) models were used to analyze the training data with the lmer 
function from the lme4 package (Bates et al., 2015) in R (version 4.2.1; R Core Team, 2022). 
The models were specified with the dependent variable (mean RT to correct responses, error 
rate, drift rate, boundary separation, or non-decision time) predicted by training session (1 to 
20) and training task (face, digit, and pattern matching), with a random effect of participant 
on the intercept.1 Type III ANOVA test statistics were estimated for the LME models using the 

1 Models with additional random effects on the participant x session interaction (see Barr et al., 2013) were 
tested but did not converge, likely due to the complexity of the model structure not being supported by the 
statistical power (see Matuschek et al., 2017).

TASK

FACES DIGITS PATTERNS

Data Recorded (N)

Trials 299,260 299,000 296,799

Sessions 599 598 598

Participants 30 30 30

Data Treatment Steps (% Remaining Trials)

1. RT (<250 ms; >2.5 MAD) 95.09% 95.48% 94.84%

2. Sessions (<125 trials) – – 94.75%

3. Sessions (<4% errors) – 88.32% 64.61%

4. Participants (<10 sessions) – 87.04% 61.25%

Data Post-Treatment (N)

Trials 284,564 260,256 181,783

Sessions 599 545 385

Participants 30 29 25

Figure 3 Graphical Illustration 
of Model Fit as a Function 
of Errors and Reaction Time 
Quartiles.

Table 1 Overview of Trial, 
Session, and Participant Count 
per Task.

Note. This table summarizes 
the number of trials, sessions, 
and participants in each 
task before and after data 
treatment steps.
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lmerTest package (Kuznetsova et al., 2017). Satterthwaite’s degrees of freedom were used to 
estimate p-values for the effects of session, task, and their interaction. 

Reaction Times and Error Rates

Figure 4 illustrates performance in the training tasks over the course of 20 training sessions. 
For mean RT to correct responses, we found a significant main effect of session, F(19, 1440) 
= 72.49, p < .001, ηp

2 = 0.49, and of task, F(2, 1442) = 987.77, p < .001, ηp
2 = 0.58. Moreover, 

the interaction between session and task was significant, F(38, 1440) = 10.01, p < .001, 
ηp

2 = 0.21. Similarly, for error rates, the effect of session was also significant, F(19, 1440) = 5.80, 
p < .001, ηp

2 = 0.07, as was the effect of task, F(2, 1443) = 345.57, p < .001, ηp
2 = 0.32. However, 

the interaction between session and task was not significant, F(38, 1440) = 1.05, p = .391, 
ηp

2 = 0.03. For better comparability to the original analysis reported in von Bastian and Oberauer 
(2013), we ran the same set of analyses but including sessions with less than 4% error rates. 
The patterns of results were the same as for the reduced data set used in the present study, 
except that the interaction between session and task was then also a significant predictor of 
error rates, F(38, 1585) = 1.43, p = .045, ηp

2 = 0.03. 

Diffusion-Model Parameters

Figure 5 illustrates the changes in drift rate, boundary separation, and non-decision time over 
the course of the 20 training sessions. Drift rate increased over the course of the sessions, 
F(19, 1440) = 12.75, p < .001, ηp

2 = 0.14, and differed per task, F(2, 1445) = 826.48, p < .001, ηp
2 

= 0.53. Also, the interaction of task and session was significant, F(38, 1440) = 1.78, p = .003, 
ηp

2 = 0.04. In contrast to the drift rate, boundary separation decreased over the course of the 
sessions, F(19, 1440) = 82.63, p < .001, ηp

2 = 0.52. The effect of task on boundary separation 
was significant, F(2, 1443) = 300.17, p < .001, ηp

2 = 0.29, as well as the interaction between 
task and session, F(38, 1440) = 6.81, p < .001, ηp

2 = 0.15. Non-decision time also decreased as 
an effect of session, F(19, 1440) = 32.97, p < .001, ηp

2 = 0.30, and differed per task, F(2, 1441) 
= 1410.51, p < .001, ηp

2 = 0.66. Session and task also interacted with regards to non-decision 
time, F(38, 1440) = 3.73, p < .001, ηp

2 = 0.09. We ran the same estimation procedures while 
including the otherwise excluded sessions with less than 4% error rates, which also fit the 

Figure 4 Training Effects 
on Mean Reaction Times 
(RTs) and Error Rates in the 
Individual Matching Tasks. 
RTs are to correct responses 
only. The error bars denote 
approximated 95% confidence 
intervals for within-subjects 
comparisons calculated 
according to Cousineau (2005) 
and Morey (2008). Note that 
there are differences in the 
number of available data 
points per session and task 
due to the reported data 
treatment.
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data well. The patterns of results from these subsequent analyses were the same as for the 
estimated parameters using the reduced data set, except that the interaction between session 
and task was no longer a significant predictor of drift rate, F(38, 1703) = 1.23, p = .158. 

In summary, drift rates increased with training, while boundary separation and non-decision 
time decreased. These changes over the course of training were found across the individual 
participants, as shown in Figures A1-3 in the Appendix. Drift rates were highest for pattern-
matching, followed by digit-matching and face-matching. The reverse pattern emerged for 
boundary separation which was highest in the face-matching task and lowest in pattern-
matching, although this difference was most pronounced at the beginning of training. Non-
decision time remained lowest for pattern-matching throughout all training sessions. 

Model Selection

Previous research has shown that fitting more than necessary drift-diffusion model parameters 
can lead to trade-offs between these unconstrained parameters and, thereby, mimic 
experimental effects (Heathcote et al., 2015). Therefore, we systematically compared models 
differing in parameterization constraints. Specifically, we fixed either the drift rate, boundary 
separation, non-decision time, or a combination of these parameters to the median of all 
session means as estimated by the three-parameter model. Model comparisons confirmed 
that the three-parameter model fit our data best. The model fit visibly decreased when fixing 
one or two of the three parameters otherwise varying freely. The decrease in model fit was most 
pronounced when fixing the non-decision time. Fixing the drift rate or boundary separation also 

Figure 5 Training Effects on 
Diffusion-Model Parameters 
in the Individual Matching 
Tasks. The error bars denote 
approximated 95% confidence 
intervals for within-subjects 
comparisons calculated 
according to Cousineau (2005) 
and Morey (2008). Note that 
there are differences in the 
number of available data 
points per session and task 
due to the reported data 
treatment.
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impacted the model fit negatively, but to a lesser extent. Critically, analyses performed on 
these lesser-fitting models led to the same results, except that the interaction between session 
and task no longer significantly predicted drift rate when fixing non-decision time (either alone 
or in combination with boundary separation). An overview of the model comparisons as well as 
the model fit of the three-parameter model including sessions with less than 4% error trials, of 
which the results are reported in the previous section, is available at https://osf.io/kz67v.

DISCUSSION
The current study investigated the mechanisms underlying training-related changes in 
processing speed by examining changes in the components of RT distributions estimated with 
the drift-diffusion model. We analyzed existing data of an extensive multi-session training 
intervention (von Bastian & Oberauer, 2013) to disentangle changes in drift rate, boundary 
separation, and non-decision time during training of three different speeded choice-RT tasks 
administered with trial-by-trial feedback. Our results showed that these decision-making 
components changed over the course of 20 training sessions with drift rates increasing in all 
three tasks. Boundary separation and non-decision time decreased, especially at the beginning 
of training. Overall, the same patterns were observed across the three training tasks with 
changes in boundary separation and non-decision time being most pronounced during initial 
training periods, whereas the rate of evidence accumulation continued to improve until later 
training sessions. The use of multiple tasks during an extensive amount of training sessions 
strengthens the implications of our study and allows for conclusions about training-related 
changes with regards to different task stimuli beyond their RT and error effects in a cognitive 
training context.

Training-related increases in drift rates confirm our hypothesis that processing speed training can 
improve the efficiency of evidence accumulation. This finding is consistent with previous studies 
with up to six training sessions that reported increased efficiency of evidence accumulation 
during training (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; 
Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014). Our results from a more 
extensive, 20-sessions training regime show that this improvement in evidence accumulation 
rate extends beyond a few initial sessions. In contrast, the decreases in boundary separation 
seem limited to initial training sessions. These findings are in line with previous research (Dutilh 
et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 2006; 
Zhang & Rowe, 2014) and our expectation that boundary separation decreases with training, 
indicating that participants decrease their response caution and increasingly emphasize speed 
over accuracy as their training progresses. Moreover, we found that this adjustment towards 
favoring speed occurs in the early stages of training.

Contrary to our hypothesis that perceptual and motor processes remain unaffected by extensive 
training, we found a training-related decrease in non-decision time. This indicates that the 
drift-diffusion parameters estimated from our data were sensitive to detect adjustments in 
non-decision processes, such as stimulus encoding and motor responses, as observed in some 
studies before (Dutilh et al., 2011; Dutilh et al., 2009; Petrov et al., 2011). Our three-parameter 
diffusion model was sensitive to detect differences in non-decision processes. Moreover, non-
decision time as well as boundary separation and drift rate were crucial components that, 
when constrained to be the same across sessions, drastically reduced model fit. Similar to the 
changes in boundary separation, the decrease in non-decision time was most pronounced 
during the initial training sessions and then remained stable throughout the rest of training. 
Overall, training-related changes in drift-diffusion parameters were similar across the different 
training tasks, with relatively negligible variations between the tasks. 

The changes in drift-diffusion parameters shed light on the mechanisms underpinning the 
training-related changes typically observed in mean RTs. In general, participants sped up 
during training, as is to be expected when repeatedly performing the same tasks (Heathcote et 
al., 2000; Logan, 1992; Newell & Rosenbloom, 1981). Shorter RTs as a result of processing speed 
training can, thus, be explained by an increased efficiency of evidence accumulation as well as 
a decrease in response caution and non-decision processes. Typically – as in the present study 
– the training-related decrease in mean RTs is most pronounced during the first few training 
sessions and then seems to slow down. Our findings show that the steep decrease in the first 

https://osf.io/kz67v
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few training sessions is driven by changes in all three major drift-diffusion parameters (drift 
rate, boundary separation, and non-decision time). The three main parameters of the drift-
diffusion model are simultaneously changing during the initial part of training, all in manners 
that reduce RTs, that is, more efficient evidence accumulation, narrower boundary separation, 
and shorter non-decision time. 

In the current study, the decrease in RTs was accompanied by an increase in error rates (that is, 
decreased accuracy), suggesting a speed-accuracy trade-off. As training progresses participants 
increasingly favored speed over accuracy, as indicated by their decrease in boundary separation. 
Previous studies reported increases in accuracy even when the boundary separation decreased 
(and the rate of evidence accumulation increased; Dutilh et al., 2009; Liu & Watanabe, 2012; 
Petrov et al., 2011; Ratcliff et al., 2006; Zhang & Rowe, 2014). However, these former studies 
applied different types of feedback regarding either the speed or accuracy of task performance 
and were performed in laboratory settings. Therefore, they did not require participants to 
incorporate an extensive training regime into their day-to-day life at home which possibly 
motivated participants in the current study to focus more on speed than accuracy. Furthermore, 
in our study, participants already started their training with low error rates and were provided 
feedback on the accuracy of their responses throughout training. Therefore, participants will 
have received mainly positive feedback on their correctness, and therefore, may have focused 
more on improving their RTs, which led to a decrease in accuracy despite improved evidence 
accumulation rates. In another study providing only accuracy-related feedback as opposed to 
speed-related feedback, participants also started training with low error rates and improved 
their RTs but not their accuracy (Dutilh et al., 2009). 

While the overall pattern of results was highly similar across all three tasks, our results suggest 
that the pattern-matching task was easiest to perform, possibly followed by the digit-matching 
and the face-matching task. The face and digit stimuli as opposed to the pattern stimuli elicited 
the most pronounced training-related changes throughout the majority of observed measures 
and drift-diffusion parameters. Mean RTs and error rates were lowest for this task throughout 
the training regime and this difference in task difficulty was also visible in the drift-diffusion 
parameters. Drift rates were highest during pattern-matching, followed by digit-matching 
and then lowest during face-matching across all training sessions. In comparison, boundary 
separation and, especially, non-decision time was considerably lower for pattern stimuli than 
for face and digit stimuli. The difference in non-decision time throughout training might indicate 
that the pattern stimuli differed with regards to their non-decision processes, presumably their 
perceptual encoding (since motor processes were identical between the tasks). 

The observed patterns of change in drift-diffusion parameters across tasks may be explained 
by Chein and Schneider’s (2012) triarchic theory of learning. The early changes in non-decision 
time and boundary separation may represent the formation stage, in which processes of 
establishing new behavioral routines are established to learn how to approach and execute 
the task. In this stage, learning relies strongly on the metacognitive system and the use of 
strategies. In the next stage of learning, the metacognitive system is less involved and, instead, 
the cognitive control network is engaged to efficiently execute the new behavioral routines. 
Possibly, the more prolonged improvements in evidence accumulation reflect this second stage 
of learning. The final stage in Chein and Schneider’s (2012) model is the automatic execution 
stage, during which the behavioral routine becomes increasingly automatized.

LIMITATIONS AND OUTLOOK

The use of multiple tasks during an extensive amount of training sessions strengthens the 
implications of the current study and allows for conclusions about training-related changes 
with regards to different task stimuli beyond their initial training effects. However, direct 
comparisons between the three tasks must be interpreted with caution. First, the drift-diffusion 
parameters were generated separately per task which might limit the comparability of the 
exact values of the parameters between these tasks. This limitation does not, however, hold 
for the RT and error data which show effects equivalent to the parameters. Therefore, we 
can compare the parameters between tasks at least to some degree. Second, the difficulty 
of the training tasks was consistent with the order of the trained tasks within each training 
session. Thus, it is possible that there was a confounding effect between task difficulty and 
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task order during training: the most difficult task of face-matching was performed first, while 
the seemingly easiest task of pattern-matching was performed last and the digit-matching 
task in-between. This raises the question whether participants improved within individual 
training sessions which led them to perform best during the final pattern-matching task. Since 
the difference between tasks was present in all measures and drift-diffusion parameters, we 
cannot completely exclude an impact of this confound between task order and task difficulty. 

Given our results, we recommend that future training studies apply an extensive training 
regime with at least 10 training sessions and multiple training tasks in order to disentangle 
the differential effects of session and task. However, we also recommend accounting for 
differences in task difficulty and task order during training. Furthermore, it would be of great 
value to investigate how training-related changes relate to transfer effects on untrained 
tasks of similar or different cognitive domains. Few and only recent studies have applied 
drift-diffusion analyses to analyze transfer effects in working memory tasks (e.g., Chen 
et al., 2022; Schmiedek et al., 2022). Findings from these studies suggested that pre- to 
post-training effects in processing speed tasks (Schmiedek et al., 2022) are similar to those 
observed in our study during training. To study the associations between training-related 
change in drift-diffusion parameters and transfer effects, a certain number of trials is 
required, as discussed in the results section. Further, a substantial number of participants 
is required, as stable correlations are obtained with a minimum of 250 participants 
(Schönbrodt & Perugini, 2013). The present study does not include this substantial number 
and, therefore, we were not able to associate the parameter changes during training with 
transfer measures. 

Due to this study’s sample size, we were also not able to investigate individual differences 
during training and possible differences in training curves and effects. Overall, the stated 
training-related changes were found across individual participants, with potential for individual 
variation mainly in the drift rate (see Figures A1-3 in the Appendix). Future studies with larger 
statistical power are required to investigate such individual variation in drift-diffusion model 
parameters, ideally with Bayesian hierarchical approaches (e.g., Heathcote et al., 2019; Wiecki 
et al., 2013) which provide more flexibility in modeling individual differences over time. 

CONCLUSION
The results of the current study show that extensive training of processing speed tasks elicits 
changes in drift-diffusion parameters. Processing speed training improves the efficiency of 
evidence accumulation and this process of improving efficiency continues throughout multiple 
sessions of an extensive training regime. In comparison, changes in response strategy, as 
indicated by a decrease in response caution and emphasis on speed over accuracy, occur 
earlier and are limited to more initial parts of training. Non-decision processes, such as stimulus 
encoding and motor responses, also improve early-on during training and these improvements 
stabilize quickly during the first training sessions. This overall pattern of prolonged training-
related changes in rate of evidence accumulation as well as early changes in response strategy 
and non-decision processes is detectable across different tasks with different visual stimuli. 
Future research could shed light into whether and how these training-related changes during 
processing speed ultimately affect transfer to untrained tasks of other cognitive domains or 
assessing transfer to everyday life functioning. 
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